Inference of Super-exponential Human Population Growth via Efficient Computation of the Site Frequency Spectrum for Generalized Models

TitleInference of Super-exponential Human Population Growth via Efficient Computation of the Site Frequency Spectrum for Generalized Models
Publication TypeJournal Article
Year of Publication2016
AuthorsGao F, Keinan A
JournalGenetics
Volume202
Pagination235–245
Date Published01/2016
ISSN0016-6731
Abstract

The site frequency spectrum (SFS) and other genetic summary statistics are at the heart of many population genetic studies. Previous studies have shown that human populations have undergone a recent epoch of fast growth in effective population size. These studies assumed that growth is exponential, and the ensuing models leave an excess amount of extremely rare variants. This suggests that human populations might have experienced a recent growth with speed faster than exponential. Recent studies have introduced a generalized growth model where the growth speed can be faster or slower than exponential. However, only simulation approaches were available for obtaining summary statistics under such generalized models. In this study, we provide expressions to accurately and efficiently evaluate the SFS and other summary statistics under generalized models, which we further implement in a publicly available software. Investigating the power to infer deviation of growth from being exponential, we observed that adequate sample sizes facilitate accurate inference; e.g., a sample of 3000 individuals with the amount of data expected from exome sequencing allows observing and accurately estimating growth with speed deviating by >=10% from that of exponential. Applying our inference framework to data from the NHLBI Exome Sequencing Project, we found that a model with a generalized growth epoch fits the observed SFS significantly better than the equivalent model with exponential growth (P-value ). The estimated growth speed significantly deviates from exponential (P-value ), with the best-fit estimate being of growth speed 12\% faster than exponential.

URLhttp://keinanlab.cb.bscb.cornell.edu/sites/default/files/papers/gao_keinan_2016_eggs_genetics.pdf
DOI10.1534/genetics.115.180570